

Efficient Physics-Informed Machine Learning Algorithms for Flow Problems Compressible/Incompressible Flows

Tulin Kaman and Xuan Gu

https://kaman.uark.edu Computational and Applied Mathematics Group Department of Mathematical Sciences University of Arkansas, Fayetteville, AR, USA

February 27, 2024

(日) (四) (日) (日) (日)

Turbulent Mixing

Rayleigh–Taylor Instability (RTI):

arises at the interface between two fluids of different densities whenever the pressure gradient opposes the density gradient.

Richtmyer-Meshkov instability (RMI):

occurs when a shock wave passes through a perturbed interface.

- An idealized subproblem of important scientific and engineering problems:
- crucial in all forms of fusion whether the confinement be magnetic, inertial or gravitational

・ ロ ト ・ 白 ト ・ 山 ト ・ 日 ト

 Supernovae explosions, inertial confinement fusion, gravitational induced mixing in oceanography

Turbulent Mixing

Characterize the structure and the evolution of the flows

Rayleigh-Taylor cirrus clouds. Source: Photograph courtesy of Prof. David Jewitt, UCLA.

Pattern created using then "accidental painting" technique developed by Siqueiros in the 1930s. It is the result of a RTI of a viscous layer. Source: From Fig. 1 of de la Calleja et al., Phys. Fluids.

A composite Hubble Space Telescope image of the Crab Nebula. Source: NASA Space Telescope Science Institute, Baltimore, Maryland, USA.

Problem statement

$$\begin{aligned} \mathbf{h}_{i}^{\mathrm{RTI}} &= \boldsymbol{\alpha}_{i} \mathrm{Agt}^{2} \\ \mathbf{h}_{i}^{\mathrm{RMI}} &= \beta_{i} \mathbf{t}^{\boldsymbol{\theta}_{i}} \end{aligned}$$

 $\left\{ \begin{array}{ll} i=b \quad {\rm for \ bubbles \ (light \ fluid)} \\ i=s \quad {\rm for \ spikes \ (heavy \ fluid)} \end{array} \right.$

 $(\alpha_{\rm b}, \alpha_{\rm s})$ and $(\theta_{\rm b}, \theta_{\rm s})$ growth rates of RTI and RMI mixing zone. h_b: penetration distance of the light fluid into the heavy fluid h_s: penetration distance of the heavy fluid into the light fluid A: Atwood ratio = $(\rho_1 - \rho_2)/(\rho_1 + \rho_2)$, g: acceleration

Simple planar RT instability under gravitational acceleration.

Diagram depicting the RT unstable interface created in an ICF fuel capsule.

Numerical Approaches to Model Turbulent Flows

Three levels of numerical simulation for turbulent flows:

- ▶ Direct Numerical Simulation (DNS)
 - ▶ The full NSE is solved without any model for turbulence
 - The most demanding method among the three, very accurate, but limited to moderate Reynolds numbers and simplified geometries
- ► Large Eddy Simulation (LES)
 - ▶ Flow field is resolved down to a certain length scale, and scales smaller than that are modeled rather than resolved
 - Computational cost higher than RANS, but much lower than DNS
- Reynolds Averaged Navier Stokes (RANS)
 - Time-averaged equations solving for the mean values of all quantities

ロトス語とスヨンスヨン

▶ The least demanding in terms of resources

Turbulence Mixing and Combustion Simulations

Front Tracking Method (FronTier) to achieve resolution of steep and sharp density gradients

イロト イヨト イヨト

Objective: Use deep learning for solving time-dependent PDEs

▶ Euler equations for compressible, inviscid flows:

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = 0 , \qquad (1)$$

$$\frac{\partial(\rho \mathbf{u})}{\partial \mathbf{t}} + \nabla \cdot (\rho \mathbf{u} \mathbf{u}^{\mathrm{T}}) + \nabla \mathbf{p} - \mathbf{f} = 0 , \qquad (2)$$

$$\frac{\partial \mathbf{E}}{\partial \mathbf{t}} + \nabla \cdot (\mathbf{u}(\mathbf{E} + \mathbf{p})) = 0 , \qquad (3)$$

▶ Navier–Stokes equations for incompressible, viscous flows

$$\frac{\partial \mathbf{u}}{\partial \mathbf{t}} + (\mathbf{u} \cdot \nabla)\mathbf{u} - \nu \Delta \mathbf{u} + \nabla \mathbf{p} = 0 \tag{4}$$

$$\nabla \cdot \mathbf{u} = 0. \tag{5}$$

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Physics-Informed Neural Networks (PINNs)

- Replace numerical methods with a neural network that approximates the solution
- Embed a PDE into the loss of the neural network using automatic differentiation technique Rumelhart, Hinton, and Williams, Learning representations by back- propagating errors, Nature, 323 (1986)
- ▶ Improve the training efficiency of PINNs using the residualbased adaptive refinement (RAR) method

▶ Implementation in the Python library DeepXDE

Raissi, Perdikaris, Karniadakis, JCP 378, 2019.

Lu, Meng, Mao, Karniadakis, SIAM Review 2021.

Deep Neural Networks

- Feed-Forward NN/ Multi-Layer Perceptrons, Convolutional NN, Recurrent NN, Radial Basis Functional NN, ...
- Classified depending on their: structure, data flow, neurons used and their density, layers and their depth activation filters etc.
- ▶ L-layer neural network $\mathcal{N}^{L}(x) : \mathbb{R}^{d_{in}} \to \mathbb{R}^{d_{out}}$ with N_{ℓ} neurons in the ℓ th layer.
- ▶ The weight matrix $W^{\ell} \in \mathbb{R}^{N_{\ell} \times N_{\ell-1}}$ and bias vector $b^{\ell} \in \mathbb{R}^{N_{\ell}}$ in the ℓ th layer
- \blacktriangleright σ activation function the logistic sigmoid, the hyperbolic tangent, the rectified linear unit.

 $\begin{array}{ll} \text{intput layer} & \mathcal{N}^0(x) = x \in \mathbb{R}^{d_{\text{in}}} \\ \text{hidden layers} & \mathcal{N}^{\ell}(x) = \sigma(W^{\ell}\mathcal{N}^{\ell-1}(x) + b^{\ell}) \in \mathbb{R}^{d_{\ell}} \text{ for } 1 \leq \ell \leq L-1 \\ \text{output layer} & \mathcal{N}^L(x) = W^L \mathcal{N}^{L-1}(x) + b^L \in \mathbb{R}^{d_{\text{out}}} \\ \end{array}$

Automatic Differentiation (AD)

- Compute the derivatives of the network outputs û w.r.t the network inputs x
- Techniques: i) Hand-coded analytical derivative; ii)finite difference; iii) symbolic differentiation; iv) automatic differentiation
- The derivatives are evaluated using backpropagation Rumelhart, Hinton, Williams. Nature 1986
- ▶ Take the derivatives of û with respect to its input x by applying the chain rule for differentiating compositions of functions using AD.

PINN for solving heat equation

Source: Lu, Meng, Mao, Karniadakis, SIAM Review 2021.

- 1. Construct a neural network $\hat{u}(x; \theta)$ with parameters θ .
- 2. Specify two training sets for the equation $T_{\rm f}$ and BC/IC $T_{\rm b}$.
- 3. Specify a loss function by summing the weighted L_2 norm of both the PDE and BC residuals.
- 4. Train the neural network to find the best parameters θ^* by minimizing the loss function $\mathcal{L}(\theta; \mathcal{T})$.

Minimizing the loss function

$\mathcal{L}(heta;\mathcal{T}) = \lambda_{\mathrm{f}}\mathcal{L}_{\mathrm{f}}(heta;\mathcal{T}_{\mathrm{f}}) + \lambda_{\mathrm{b}}\mathcal{L}_{\mathrm{b}}(heta;\mathcal{T}_{\mathrm{b}})$

▶ Loss is highly nonlinear and nonconvex with respect to θ

▶ Minimize the loss function by gradient-based optimizers

- ► Adam: Adaptive Moment Estimation
- L-BFGS: Limited Broyden–Fletcher–Goldfarb–Shanno algorithm
- The required number of iterations highly depends on the problem (the smoothness of the solution)

- 4 同 ト 4 ヨ ト 4 ヨ ト

Loss balancing scheme: ensure that each term in the loss function makes the same amount of progress over time.

Incompressible Navier-Stokes Equation

Governing Equation

$$\rho(\frac{\partial \mathbf{u}}{\partial \mathbf{t}} + \mathbf{u} \cdot \nabla \mathbf{u}) = \nabla \cdot \sigma(\mathbf{u}, \mathbf{p}) + \mathbf{f}$$
$$\nabla \cdot \mathbf{u} = 0$$

- $\blacktriangleright~\rho, \mathbf{u}, \mathbf{p}, \mu$ denote density, velocity, pressure and viscosity
- ► $\sigma(\mathbf{u}, \mathbf{p})$ denotes the stress tensor: $\sigma(\mathbf{u}, \mathbf{p}) = 2\mu\epsilon(\mathbf{u}) \mathbf{pI}$
- ► $\epsilon(\mathbf{u})$ denotes the strain-rate tensor: $\epsilon(\mathbf{u}) = \frac{1}{2}(\nabla \mathbf{u} + (\nabla \mathbf{u})^{\mathrm{T}})$

- 4 回 ト - 4 回 ト

► Re denotes Reynolds Number: $Re = \frac{\rho u H}{\mu}$

Test1/2: Flow past a cylinder

Geometry and parameters are taken from problem DFG 2D-2 benchmark test

Free Stream with $u_{\infty} = 1$, Re = 100

Free Stream with $u_{\infty} = 2$, Re = 1000

14/24 | Efficient PINN for flow problems | Tulin Kaman | SIAM UQ24 Feb 27, 2024

PINNs Setup

- Fully Connected Feedforward neural network: Layers = 50 × 6
- ▶ Activation Function: "tanh"
- ▶ Optimization Algorithm: "adam"
- ▶ Learning Rate:
 - First half iterations: 10^{-3}
 - Second half iterations: 10^{-4}

ARKANSAS

- Case 1: $u_{\infty} = 1$, Re = 100
 - Spacial Domain $[-2, 2] \times [1, 8]$
 - ▶ Temporal Domain: [200, 207]
 - ▶ Sample Size: 7000
 - Iterations to Convergence: 20K

Case 2: $u_{\infty} = 2$, Re = 1000

- Spacial Domain
 [0.05, 0.35] × [0.5, 1.2]
- ▶ Temporal Domain: [15, 16]
- Sample Size: 20000
- Iterations to Convergence: 600K

Compressible Euler Equations

Euler Equations

$$\begin{split} U_{t} + F(U)_{x} &= 0\\ U &= \begin{pmatrix} \rho \\ \rho u \\ E \end{pmatrix}, F(U) &= \begin{pmatrix} \rho u \\ \rho u^{2} + p \\ (E + p)u \end{pmatrix} \end{split}$$

- where ρ , u, p denote density, velocity, and pressure, γ is the constant specific heat ratio.
- ► Total Energy: $E = \rho e + \frac{1}{2}\rho u^2$;
- Internal energy: $e = \frac{p}{(\gamma 1)\rho}$;
- Conservation Laws of mass, momentum, energy of compressible flow

Test1: Sod's Shock Tube

For the contact discontinuity tracking

$$(\rho, \mathbf{u}, \mathbf{p}) = \begin{cases} (1, 0, 1) & \text{if } 0 \le \mathbf{x} \le 0.5 \\ (0.125, 0, 0.1) & \text{if } 0.5 < \mathbf{x} \le 1 \end{cases}$$

- Fully Connected Feedforward neural network: Layers = 20 × 5
- ▶ Activation Function: "tanh"
- ▶ Optimization Algorithm: "adam"
- ▶ Learning Rate:
 - First half iterations: 10^{-3}
 - Second half iterations: 10^{-4}

PINNs Setup

- ▶ Spacial Domain [0, 1]
- ▶ Temporal Domain: [0,0.2]
- ▶ Sample Size: 20000
- ▶ Iterations to Convergence: 30M

19/24 | Efficient PINN for flow problems | Tulin Kaman | SIAM UQ24 Feb 27, 2024

PINNs Result

メロト メタト メヨト メヨト

Test2: Shock-Entropy Wave Interaction

Study the stability and accuracy of the scheme for strong shocks.

$$(\rho, \mathbf{u}, \mathbf{p}) = \begin{cases} (3.857143, 2.629369, 10.33333) & \text{if } \mathbf{x} \le 0\\ (1 + 0.2 \sin 5 \mathbf{x}, 0, 1) & \text{if } \mathbf{x} \ge 0 \end{cases}$$

▶ Fully Connected Feedforward neural network

 Train PINNs from random initialization 10 independent runs

- Layers = $10 + 20 \times 5$
- Activation Function: "tanh"
- ▶ Optimization Algorithm: "adam"
- Learning Rate:
 - First half iterations: 10^{-3}
 - ▶ Second half iterations: 10^{-4}

PINNs Setup

- Spacial Domain [-5, 5]
- Temporal Domain: [0, 2.0]
- ▶ Sample Size: 20K
- ▶ Iterations to Convergence: 450K

22/24 | Efficient PINN for flow problems | Tulin Kaman | SIAM UQ24 Feb 27, 2024

Observation:

▶ For accuracy, tune all the hyperparameters,

- network size, learning rate, and the number of residual points.
- Residual-based adaptive refinement by increasing residual points at "critical intervals".
- ▶ The required network size depends on the smoothness of the PDE solution.
 - Smooth PDE solution: a small network is sufficient
 Stiff PDE solution: a deeper and wider network is required for the PDEs to achieve a similar level of accuracy

Thank you!

- ▶ Dr. James Glimm (SBU) and Dr. Snezhana Abarzhi (UWA) for many helpful comments and discussions
- Dr. David Youngs (AWE) and Dr. Jeffrey W. Jacob (UofA) for providing their RTI and RMI experimental data
- ▶ Dr. Oleg Schilling (LLNL) for sharing RMI simulation data
- ▶ Dr. Ann Almgren (LBNL) for supporting new AMReX-FronTier
- Lawrence Jesser Toll Jr. Endowed Chair at the Department of Mathematical Sciences in the Fulbright College of Arts & Sciences, 2017-present.

イロト イヨト イヨト イヨ

- ▶ University of Arkansas Chancellor's Innovation Fund, 2022-2025.
- ▶ Arkansas High Performance Computing Center (AHPCC)
- ▶ NSF #2204490, NSF #2346752