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Turbulent Mixing

Rayleigh–Taylor Instability (RTI):
arises at the interface between two fluids of different densities
whenever the pressure gradient opposes the density gradient.

Richtmyer-Meshkov instability (RMI):
occurs when a shock wave passes through a perturbed interface.

I An idealized subproblem of important scientific and
engineering problems:

I crucial in all forms of fusion whether the confinement be
magnetic, inertial or gravitational

I Supernovae explosions, inertial confinement fusion,
gravitational induced mixing in oceanography
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Turbulent Mixing

Characterize the structure and the evolution of the flows

Rayleigh–Taylor cirrus clouds.
Source: Photograph courtesy
of Prof. David Jewitt, UCLA.

Pattern created using then
‘’accidental painting’’ technique

developed by Siqueiros in the
1930s. It is the result of a RTI of a

viscous layer.
Source: From Fig. 1 of de la
Calleja et al., Phys. Fluids.

A composite Hubble Space
Telescope image of the Crab

Nebula.
Source: NASA Space

Telescope Science Institute,
Baltimore, Maryland, USA.
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Problem statement
hRTI

i = αiAgt2

hRMI
i = βitθi{

i = b for bubbles (light fluid)
i = s for spikes (heavy fluid)

(αb, αs) and (θb, θs) growth rates of RTI and RMI mixing zone.
hb: penetration distance of the light fluid into the heavy fluid
hs: penetration distance of the heavy fluid into the light fluid
A: Atwood ratio = (ρ1 − ρ2)/(ρ1 + ρ2), g: acceleration

Simple planar RT instability under
gravitational acceleration. Diagram depicting the RT unstable interface

created in an ICF fuel capsule.
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Numerical Approaches to Model Turbulent Flows

Three levels of numerical simulation for turbulent flows:
I Direct Numerical Simulation (DNS)

I The full NSE is solved without any model for turbulence
I The most demanding method among the three, very

accurate, but limited to moderate Reynolds numbers and
simplified geometries

I Large Eddy Simulation (LES)
I Flow field is resolved down to a certain length scale, and

scales smaller than that are modeled rather than resolved
I Computational cost higher than RANS, but much lower

than DNS
I Reynolds Averaged Navier Stokes (RANS)

I Time-averaged equations solving for the mean values of all
quantities

I The least demanding in terms of resources
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Turbulence Mixing and Combustion Simulations

Front Tracking Method (FronTier) to achieve resolution of
steep and sharp density gradients
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Objective: Use deep learning for solving time-dependent PDEs

I Euler equations for compressible, inviscid flows:

∂ρ

∂t
+∇ · (ρu) = 0 , (1)

∂(ρu)
∂t

+∇ · (ρuuT) +∇p − f = 0 , (2)

∂E
∂t

+∇ · (u(E + p)) = 0 , (3)

I Navier–Stokes equations for incompressible, viscous flows

∂u
∂t

+ (u · ∇)u − ν∆u +∇p = 0 (4)

∇ · u = 0. (5)
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Physics-Informed Neural Networks (PINNs)

I Replace numerical methods with a neural network that
approximates the solution

I Embed a PDE into the loss of the neural network using
automatic differentiation technique Rumelhart, Hinton, and
Williams, Learning representations by back- propagating errors,
Nature, 323 (1986)

I Improve the training efficiency of PINNs using the residual-
based adaptive refinement (RAR) method

I Implementation in the Python library DeepXDE
Raissi, Perdikaris, Karniadakis, JCP 378, 2019.
Lu, Meng, Mao, Karniadakis, SIAM Review 2021.
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Deep Neural Networks
I Feed-Forward NN/ Multi-Layer Perceptrons, Convolutional

NN, Recurrent NN, Radial Basis Functional NN, ...
I Classified depending on their: structure, data flow, neurons

used and their density, layers and their depth activation
filters etc.

I L-layer neural network N L(x) : Rdin → Rdout with N`

neurons in the `th layer.
I The weight matrix W` ∈ RN`×N`−1 and bias vector

b` ∈ RN` in the `th layer
I σ activation function the logistic sigmoid, the hyperbolic

tangent, the rectified linear unit.

intput layer N 0(x) = x ∈ Rdin

hidden layers N `(x) = σ(W`N `−1(x) + b`) ∈ Rd` for 1 ≤ ` ≤ L − 1
output layer N L(x) = WLN L−1(x) + bL ∈ Rdout
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Automatic Differentiation (AD)

I Compute the derivatives of the network outputs û w.r.t the
network inputs x

I Techniques: i) Hand-coded analytical derivative; ii)finite
difference; iii) symbolic differentiation; iv) automatic
differentiation

I The derivatives are evaluated using backpropagation
Rumelhart, Hinton, Williams. Nature 1986

I Take the derivatives of û with respect to its input x by
applying the chain rule for differentiating compositions of
functions using AD.
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PINN for solving heat equation
Source: Lu, Meng, Mao, Karniadakis, SIAM Review 2021.

1. Construct a neural network û(x; θ) with parameters θ .
2. Specify two training sets for the equation Tf and BC/IC Tb.
3. Specify a loss function by summing the weighted L2 norm of both the

PDE and BC residuals.
4. Train the neural network to find the best parameters θ∗ by

minimizing the loss function L(θ; T ).
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Minimizing the loss function

L(θ; T ) = λfLf(θ; Tf) + λbLb(θ; Tb)

I Loss is highly nonlinear and nonconvex with respect to θ

I Minimize the loss function by gradient-based optimizers
I Adam: Adaptive Moment Estimation
I L-BFGS: Limited Broyden–Fletcher–Goldfarb–Shanno

algorithm
I The required number of iterations highly depends on the

problem (the smoothness of the solution)
I Loss balancing scheme: ensure that each term in the loss

function makes the same amount of progress over time.
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Incompressible Navier-Stokes Equation

Governing Equation

ρ(
∂u
∂t

+ u · ∇u) = ∇ · σ(u,p) + f

∇ · u = 0

I ρ,u,p, µ denote density, velocity, pressure and viscosity
I σ(u,p) denotes the stress tensor: σ(u,p) = 2µε(u)− pI
I ε(u) denotes the strain-rate tensor: ε(u) = 1

2(∇u + (∇u)T)

I Re denotes Reynolds Number: Re = ρuH
µ
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Test1/2: Flow past a cylinder
Geometry and parameters are taken from problem DFG 2D-2
benchmark test
I Free Stream with u∞ = 1,Re = 100

I Free Stream with u∞ = 2,Re = 1000
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PINNs Setup

I Fully Connected Feedforward neural network:
Layers = 50 × 6

I Activation Function: “tanh”
I Optimization Algorithm: “adam”
I Learning Rate:

I First half iterations: 10−3

I Second half iterations: 10−4
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Case 1: u∞ = 1,Re = 100
I Spacial Domain [−2, 2]× [1, 8]
I Temporal Domain: [200, 207]
I Sample Size: 7000
I Iterations to Convergence:

20K

Case 2: u∞ = 2,Re = 1000
I Spacial Domain

[0.05, 0.35]× [0.5, 1.2]
I Temporal Domain: [15, 16]
I Sample Size: 20000
I Iterations to Convergence:

600K
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Compressible Euler Equations

Euler Equations

Ut + F(U)x = 0

U =

 ρ
ρu
E

 ,F(U) =

 ρu
ρu2 + p
(E + p)u


I where ρ,u,p denote density, velocity, and pressure, γ is the

constant specific heat ratio.
I Total Energy: E = ρe + 1

2ρu2;
I Internal energy: e = p

(γ−1)ρ ;
I Conservation Laws of mass, momentum, energy of

compressible flow
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Test1: Sod’s Shock Tube

For the contact discontinuity tracking

(ρ,u,p) =

{
(1, 0, 1) if 0 ≤ x ≤ 0.5
(0.125, 0, 0.1) if 0.5 < x ≤ 1

I Fully Connected Feedforward neural network:
Layers = 20 × 5

I Activation Function: “tanh”
I Optimization Algorithm: “adam”
I Learning Rate:

I First half iterations: 10−3

I Second half iterations: 10−4

18/24 | Efficient PINN for flow problems | Tulin Kaman | SIAM UQ24 Feb 27, 2024



PINNs Setup

I Spacial Domain [0, 1]
I Temporal Domain: [0, 0.2]
I Sample Size: 20000
I Iterations to Convergence: 30M
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PINNs Result

Figure: 300K iterations Figure: 30M iterations
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Test2: Shock-Entropy Wave Interaction
Study the stability and accuracy of the scheme for strong
shocks.

(ρ,u,p) =

{
(3.857143, 2.629369, 10.33333) if x ≤ 0
(1 + 0.2 sin 5x, 0, 1) if x ≥ 0

I Fully Connected Feedforward neural network
I Train PINNs from random initialization 10 independent

runs
I Layers = 10 + 20 × 5

I Activation Function: “tanh”
I Optimization Algorithm: “adam”
I Learning Rate:

I First half iterations: 10−3

I Second half iterations: 10−4
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PINNs Setup
I Spacial Domain [−5, 5]
I Temporal Domain: [0, 2.0]
I Sample Size: 20K
I Iterations to Convergence: 450K
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Observation:

I For accuracy, tune all the hyperparameters,
I network size, learning rate, and the number of residual

points.
I Residual-based adaptive refinement by increasing residual

points at “critical intervals”.
I The required network size depends on the smoothness of the

PDE solution.
I Smooth PDE solution: a small network is sufficient
I Stiff PDE solution: a deeper and wider network is required

for the PDEs to achieve a similar level of accuracy
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I Dr. Oleg Schilling (LLNL) for sharing RMI simulation data
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