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Turbulent Mixing

Rayleigh—Taylor Instability (RTI):

arises at the interface between two fluids of different densities
whenever the pressure gradient opposes the density gradient.

Richtmyer-Meshkov instability (RMI):

occurs when a shock wave passes through a perturbed interface.

An idealized subproblem of important scientific and
engineering problems:

crucial in all forms of fusion whether the confinement be
magnetic, inertial or gravitational

Supernovae explosions, inertial confinement fusion,
gravitational induced mixing in oceanography
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Turbulent Mixing

Characterize the structure and the evolution of the flows

Rayleigh—Taylor cirrus clouds.
Source: Photograph courtesy
of Prof. David Jewitt, UCLA.

s .6/ 0% 48
Pattern created using then A composite Hubble Space

“accidental painting’’ technique Telescope image of the Crab
developed by Siqueiros in the Nebula.
1930s. It is the result of a RTI of a Source: NASA Space
viscous layer. Telescope Science Institute,
Source: From Fig. 1 of de la Baltimore, Maryland, USA.

Calleja et al., Phys. Fluids.
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Problem statement
W = o Agt?

RRML g0

i=Db for bubbles (light fluid)
i=s for spikes (heavy fluid)

(b, ag) and (Op, 65) growth rates of RTT and RMI mixing zone.
hy: penetration distance of the light fluid into the heavy fluid
hg: penetration distance of the heavy fluid into the light fluid
A: Atwood ratio = (p1 — p2)/(p1 + p2), g: acceleration

Light
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Simple p%ana:r RT mstablllt.y under Diagram depicting the RT unstable interface
gravitational acceleration. "
created in an-ICF fuel capsule.
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Numerical Approaches to Model Turbulent Flows

Three levels of numerical simulation for turbulent flows:
» Direct Numerical Simulation (DNS)

> The full NSE is solved without any model for turbulence

» The most demanding method among the three, very
accurate, but limited to moderate Reynolds numbers and
simplified geometries

» Large Eddy Simulation (LES)

> Flow field is resolved down to a certain length scale, and
scales smaller than that are modeled rather than resolved

» Computational cost higher than RANS, but much lower
than DNS

» Reynolds Averaged Navier Stokes (RANS)

> Time-averaged equations solving for the mean values of all
quantities
» The least demanding in terms of resources
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Turbulence Mixing and Combustion Simulations

Front Tracking Method (FronTier) to achieve resolution of
steep and sharp density gradients

+ RTlsingle mode simulation at t=10s.
Comparison of a FLASH run without
(left) and with (right) front tracking

Use o front tracking API - FTI

* Initial Perturbations

Long-wavelength perturbations:

Could be present in the initial data ?

Could contribute to the self similar growth constant a by a factor of
two or more?

Modal Analysis of exparimental data of Smeaton Youngs 87
PHILOSOPHICAL i

PHILOSORICAL New directions for

\ Rayleigh-Taylor mixing
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* Initial Conditions
Uncertainty Quantification(UQTk@SNL)

Effect of input parameters on the
growth rate

7. Kaman, Model caiibration for Turbulent Mixing.
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Research

Verification and Validation study of Large Eddy

W

convergence to a Young measure valued solution

Extract Probability Distribution Functions (PDF) by binning results. 8x2
supercell grids. For each supercell, bin the concentration values
Capture the local fluctuations of the solutions

Study of Convergence of PDF and associated Cumulative Distribution
Functions (CDF)

Simulations of turbulent mixing and combustion within the
engine of a scramjet", in collaboration with Stanford
University's Predictive Science Academic Alliance Program

on the Physics of Compressible Turbulent Mixing,
pp.129-134, Marsoillo, France.

= Agtitem)

Center, (8), pp. 4383 - 4402, 2016,

AN

* Performance of FronTier Simulation Package - Argonne's IBM
Blue Gene/P supercomputer and scale it to entire system - 163,840 cores.

- 2011 DoE INCITE Award Project “Uncertainty Quantification for Turbulent Mixing”

2012 DoE INCITE Award Project “Stochastic w* convergence for Turbulent Combustion”
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Objective: Use deep learning for solving time-dependent PDEs

> Euler equations for compressible, inviscid flows:

ap B

a—i—V-(pu)—O, (1)
a(aptu)—i-v'(puuT)jLVp—f:O, (2)
OE

STV (uE+p) =0, (3)

> Navier—Stokes equations for incompressible, viscous flows

@—F(U'V)U—VAU—FVP =0 (4)

ot
V-u =0. (5)
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Physics-Informed Neural Networks (PINNs)

> Replace numerical methods with a neural network that
approximates the solution

» Embed a PDE into the loss of the neural network using
automatic differentiation technique Rumelhart, Hinton, and

Williams, Learning representations by back- propagating errors,
Nature, 323 (1986)

> Improve the training efficiency of PINNs using the residual-
based adaptive refinement (RAR) method

P Implementation in the Python library DeepXDE

Raissi, Perdikaris, Karniadakis, JCP 378, 2019.
Lu, Meng, Mao, Karniadakis, STAM Review 2021.
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Deep Neural Networks

Feed-Forward NN/ Multi-Layer Perceptrons, Convolutional
NN, Recurrent NN, Radial Basis Functional NN, ...
Classified depending on their: structure, data flow, neurons
used and their density, layers and their depth activation
filters etc.

L-layer neural network NV(x) : Rdin — Rdout with N,
neurons in the fth layer.

The weight matrix W¢ € RNe*Ne—1 and bias vector

b € RN¢ in the ¢th layer

o activation function the logistic sigmoid, the hyperbolic
tangent, the rectified linear unit.

intput layer NO(x) =x € Rdin
hidden layers N*(x) = o(WN 1 (x) + b)) e R¥ for 1 < ¢ <L —1
output layer NE(x) = WENL=L(x) + b € Rdout
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Automatic Differentiation (AD)

> Compute the derivatives of the network outputs it w.r.t the
network inputs x

» Techniques: i) Hand-coded analytical derivative; ii)finite
difference; iii) symbolic differentiation; iv) automatic
differentiation

P The derivatives are evaluated using backpropagation
Rumelhart, Hinton, Williams. Nature 1986

> Take the derivatives of i with respect to its input x by
applying the chain rule for differentiating compositions of
functions using AD.
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PINN for solving heat equation
Source: Lu, Meng, Mao, Karniadakis, STAM Review 2021.

PDE())

1. Construct a neural network {i(x; 6) with parameters 6 .
Specify two training sets for the equation 7f and BC/IC Ty,

3. Specify a loss function by summing the weighted Lo norm of both the
PDE and BC residuals.

4. Train the neural network to find the best parameters 6™ by
minimizing the loss function £(0; 7).

o
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Minimizing the loss function

L(0;T) = MLe(0; Ts) + Mo L1v(6; Tp)

> Loss is highly nonlinear and nonconvex with respect to 8
> Minimize the loss function by gradient-based optimizers

> Adam: Adaptive Moment Estimation

» L-BFGS: Limited Broyden—Fletcher—Goldfarb—Shanno
algorithm

» The required number of iterations highly depends on the
problem (the smoothness of the solution)

> Loss balancing scheme: ensure that each term in the loss
function makes the same amount of progress over time.
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Incompressible Navier-Stokes Equation

> p,u,p, u denote density, velocity, pressure and viscosity
» o(u,p) denotes the stress tensor: o(u,p) = 2ue(u) — pl
> €(u) denotes the strain-rate tensor: e(u) = $(Vu+ (Vu)?)

» Re denotes Reynolds Number: Re = %H

(=] = = =

DA
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Test1/2: Flow past a cylinder

Geometry and parameters are taken from problem DFG 2D-2
benchmark test

» Free Stream with u,, = 1, Re = 100

» Free Stream with us, = 2, Re = 1000
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PINNs Setup

> Fully Connected Feedforward neural network:
Layers = 50 x 6

> Activation Function: “tanh”
> Optimization Algorithm: “adam”

P> Learning Rate:

» First half iterations: 103
» Second half iterations: 10~%
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Case 1: uy, = 1,Re =100

Case 2: us = 2,Re = 1000

>

> Spacial Domain [—2,2] x [1, §]

» Temporal Domain: [200, 207]
» Sample Size: 7000

> Iterations to Convergence:

20K

U-PINN (t=200)

1
) OE
-1
2 4 6
x

u-Reference solution (t=200)

1

> 0

-1
2 4 6
x

>

Spacial Domain
[0.05,0.35] x [0.5,1.2]

Sample Size: 20000

» Temporal Domain: [15,16]

> Tterations to Convergence:

600K

U-PINN (t=15.001)
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Compressible Euler Equations

> where p,u, p denote density, velocity, and pressure, « is the
constant specific heat ratio.

> Total Energy: E = pe + %qu;

v

. _ p_.
Internal energy: e = =05

> Conservation Laws of mass, momentum, energy of
compressible flow

] = =

DA
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Testl: Sod’s Shock Tube

For the contact discontinuity tracking

(1,0,1) if0<x<05
(psu,p) = .
(0.125,0,0.1) if0.5<x<1

> Fully Connected Feedforward neural network:
Layers =20 x 5

> Activation Function: “tanh”

> Optimization Algorithm: “adam”

> Learning Rate:

> First half iterations: 103
» Second half iterations: 10~
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PINNs Setup

» Spacial Domain [0, 1]
» Temporal Domain: [0,0.2]
> Sample Size: 20000

> Tterations to Convergence: 30M

101 —— Glimm scheme mesh 200 10
— Exact solution
08 08
2 206
G 06 z
2 2
& &
04
04
02
02 l
00 02 04 06 08 0.0 02 04 0. 08 10
x X, time = 0.2
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PINNs Result

02

0.0 02 0.4 0.6 0.8 10
x, time = 0.2

Figure: 300K iterations

0.8

Density

04

0.2

0.0 0.2 0.4 0.6 0.8 10
X, time = 0.2

Figure: 30M iterations
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Test2: Shock-Entropy Wave Interaction

Study the stability and accuracy of the scheme for strong
shocks.

(.1, p) = (3.857143,2.629369, 10.33333) if x <0
PPl = (1+0.2sin5x,0,1) if x>0
> Fully Connected Feedforward neural network

» Train PINNs from random initialization 10 independent
runs
> Layers = 10 + 20 x 5

> Activation Function: “tanh”
> Optimization Algorithm: “adam”

P> Learning Rate:

> First half iterations: 103
» Second half iterations: 10~*
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PINNs Setup

» Spacial Domain [—5, 5]

» Temporal Domain: [0,2.0]

> Sample Size: 20K

> Iterations to Convergence: 450K

5
3.0
) E\I\N
2.5
3
%‘ > 2.0
; ;
a 8
|
15
10 1.0
—— Front tracking mesh 1600
—=— Front tracking mesh 400
= Front tracking mesh 200
0 -a -2 0 2

-4 -2 0 2 4 x, time = 1.8
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Observation:

» For accuracy, tune all the hyperparameters,

> network size, learning rate, and the number of residual
points.

> Residual-based adaptive refinement by increasing residual
points at “critical intervals”.

» The required network size depends on the smoothness of the
PDE solution.

» Smooth PDE solution: a small network is sufficient
> Stiff PDE solution: a deeper and wider network is required
for the PDEs to achieve a similar level of accuracy
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Thank you!

LN

» Dr. James Glimm (SBU) and Dr. Snezhana Abarzhi (UWA) for many
helpful comments and discussions

» Dr. David Youngs (AWE) and Dr. Jeffrey W. Jacob (UofA) for
providing their RTI and RMI experimental data

» Dr. Oleg Schilling (LLNL) for sharing RMI simulation data
» Dr. Ann Almgren (LBNL) for supporting new AMReX-FronTier

» Lawrence Jesser Toll Jr. Endowed Chair at the Department of
Mathematical Sciences in the Fulbright College of Arts & Sciences,
2017-present.

> University of Arkansas Chancellor’s Innovation Fund, 2022-2025.
> Arkansas High Performance Computing Center (AHPCC)
> NSF #2204490, NSF #2346752
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